2 Commits 2a6cf5476c ... cc65a3a794

Author SHA1 Message Date
  Ali cc65a3a794 Adding starting kiit classifier 2 years ago
  Ali e0ef580cd0 Set to rampkit format 2 years ago

File diff suppressed because it is too large
+ 9082 - 0
biologyOrderPrediction_starting_kit.html


File diff suppressed because it is too large
+ 390 - 0
biologyOrderPrediction_starting_kit.ipynb


File diff suppressed because it is too large
+ 9082 - 0
biologyOrderPrediction_starting_kit_no_input.html


+ 201 - 0
problem.py

@@ -0,0 +1,201 @@
+#%%
+from multiprocessing.sharedctypes import Value
+import sys
+import os
+sys.path.append(os.path.abspath(os.path.dirname(__file__))) # Dirty but it works
+
+import rampwf as rw
+from rampwf.prediction_types.detection import Predictions as DetectionPredictions
+from rampwf.utils.importing import import_module_from_source
+import pandas as pd
+import numpy as np
+from sklearn.model_selection import ShuffleSplit, train_test_split
+from sklearn.metrics import roc_auc_score
+from bop_scripts import preprocessing
+import itertools
+# %%
+# Parameters
+problem_title = 'Biology Order Prescription'
+data = "./data/mimic-iv.sqlite"
+lab_dictionnary = pd.read_csv("./config/lab_items.csv").set_index("item_id")["3"].to_dict()
+get_drugs, get_diseases = True, True
+# %%
+# Getting data
+if os.path.exists("./data/X.csv"):
+    X = pd.read_csv("./data/X.csv")
+else:
+    print("Creating X dataset (first run)")
+    X = preprocessing.generate_features_dataset(
+        database="./data/mimic-iv.sqlite",
+        get_drugs=get_drugs,
+        get_diseases=get_diseases
+    )
+    X["last_7"] = X["last_7"].fillna(0)
+    X["last_30"] = X["last_30"].fillna(0)
+    X.to_csv("./data/X.csv", header=True, index=False)
+
+if os.path.exists("./data/y.csv"):
+    y = pd.read_csv("./data/y.csv")
+else:
+    print("Creating y dataset (first run)")
+    y = preprocessing.generate_labels_dataset(
+        database="./data/mimic-iv.sqlite",
+        lab_dictionnary=lab_dictionnary,
+    )
+    y.to_csv("./data/y.csv", header=True, index=False)
+
+# Creating train and test
+if (os.path.exists("./data/train.csv") == False) or (os.path.exists("./data/test.csv") == False):
+    X_train, X_test, y_train, y_test = train_test_split(
+        X, y, test_size=10000, random_state=42
+    )
+
+    train = pd.merge(
+        X_train,
+        y_train,
+        left_on="stay_id",
+        right_on="stay_id"
+    ).reset_index(drop=True)
+    train.to_csv("./data/train.csv", header=True, index=False)
+
+    test = pd.merge(
+        X_test,
+        y_test,
+        left_on="stay_id",
+        right_on="stay_id"
+    ).reset_index(drop=True)
+    test.to_csv("./data/test.csv", header=True, index=False)
+
+# %%
+# Get rampwf evaluation 
+class make_detection_fixed(DetectionPredictions):
+    def __init__ (self, *args, **kwargs):
+        super().__init__ (*args, **kwargs)
+
+    def set_valid_in_train (self, predictions, test_is):
+        self.y_pred = np.repeat(self.y_pred.reshape(-1, 1), predictions.y_pred.shape[1], axis=1)
+        self.y_pred[test_is] = predictions.y_pred
+
+    def set_slice(self, valid_indexes):
+        if isinstance(valid_indexes, list):
+            self.y_pred = self.y_pred[valid_indexes]
+
+    @classmethod
+    def combine(cls, predictions_list, index_list=None, greedy=False):
+        if index_list is None:  # we combine the full list
+            index_list = range(len(predictions_list))
+        y_comb_list = [predictions_list[i].y_pred for i in index_list]
+
+        n_preds = y_comb_list[0].shape[0]
+        n_labels = y_comb_list[0].shape[1]
+
+        y_preds_combined = np.empty((n_preds, n_labels), dtype=object)
+
+        for i in range(n_preds):
+            preds_list = [preds[i,:] for preds in y_comb_list
+                          if preds[i, 0] is not None]
+
+            if len(preds_list) == 1:
+                # no overlap in the different prediction sets -> simply take
+                # the single one that is not None
+                preds_combined = preds_list[0]
+            elif len(preds_list) > 1:
+                preds_combined, _ = combine_predictions(
+                    preds_list, cls.iou_threshold, greedy=greedy)
+
+            if len(preds_list) > 0:
+                y_preds_combined[i,:] = preds_combined
+
+        combined_predictions = cls(y_pred=y_preds_combined)
+        
+        return combined_predictions
+
+#%%
+def combine_predictions(preds_list, iou_threshold, greedy=False):
+    """
+    Combine multiple sets of predictions (of different models)
+    for a single patch.
+    """
+
+    combined_prediction = np.array(preds_list).mean(axis=0)
+    return combined_prediction, None
+
+#%%
+_features_name = X.columns.tolist()[1:]
+_prediction_label_names = y.columns.tolist()[1:]
+prediction_type = make_detection_fixed
+# %%
+class ROCAUC_fixed(rw.score_types.base.BaseScoreType):
+    is_lower_the_better = False
+    minimum = 0.0
+    maximum = 1.0
+
+    def __init__(self, index, name='roc_auc', precision=2):
+        self.name = name
+        self.precision = precision
+        self.index = index
+
+    def score_function(self, ground_truths, predictions):
+        """A hybrid score.
+        It tests the predicted _probability_ of the second class
+        against the true _label index_ (which is 0 if the first label is the
+        ground truth, and 1 if it is not, in other words, it is the
+        true probability of the second class). Thus we have to override the
+        `Base` function here
+        """
+
+        y_proba = predictions.y_pred[:, self.index]
+        y_true_proba = ground_truths.y_pred[:, self.index]
+    
+        mask = (y_proba != None)
+        y_proba, y_true_proba = y_proba[mask], y_true_proba[mask]
+        
+        return self.__call__(y_true_proba, y_proba)
+
+    def __call__(self, y_true_proba, y_proba):
+        return roc_auc_score(y_true_proba, y_proba)
+
+# %%
+class customClassifier(rw.workflows.Classifier):
+    def train_submission (self, module_path, X, y_array, train_is=None, prev_trained_model=None):
+        if train_is is None:
+            train_is = slice(None, None, None)
+        
+        classifier = import_module_from_source(
+            os.path.join(module_path, self.element_names[0] + '.py'),
+            self.element_names[0],
+            sanitize=True
+        )
+        clf = classifier.Classifier()
+        if prev_trained_model is None:
+            clf.fit(X.iloc[train_is,:], y_array[train_is])
+        else:
+            clf.fit(
+                X.iloc[train_is,:], y_array[train_is], prev_trained_model)
+
+        return clf
+
+
+workflow = customClassifier()
+score_types = [ROCAUC_fixed(name=f"AUC {_prediction_label_names[i]}", index=i) for i in range(len(_prediction_label_names))]
+Predictions = prediction_type
+# %%
+def get_cv(X, y):
+    cv = ShuffleSplit(n_splits=3, test_size=0.2, random_state=42)
+    return cv.split(X, y)
+
+
+def _read_data(path, f_name):
+    df = pd.read_csv(os.path.join(path, 'data', f_name))
+    X = df[_features_name]
+    y = df[_prediction_label_names].astype("int").values
+
+    return X, y
+
+def get_train_data(path='.'):
+    f_name = 'train.csv'
+    return _read_data(path, f_name)
+
+def get_test_data(path='.'):
+    f_name = 'test.csv'
+    return _read_data(path, f_name)

+ 20 - 0
submissions/dummy/classifier.py

@@ -0,0 +1,20 @@
+import numpy as np
+from sklearn.base import BaseEstimator
+
+
+class Classifier(BaseEstimator):
+
+    def fit(self, X, y):
+        self.pred = y.mean(axis=0)
+
+        return self
+
+    def predict_proba(self, X):
+        y_pred = np.repeat(self.pred.reshape(1, -1), X.shape[0], axis=0)
+
+        return y_pred
+
+    def predict(self, X):
+        y_pred = self.predict_proba(X)
+
+        return (y_pred >= 0.5)*1

+ 90 - 0
submissions/starting_kit/classifier.py

@@ -0,0 +1,90 @@
+import sys
+import os
+from pathlib import Path
+sys.path.append(str(Path(os.path.dirname(__file__)).parent)) # Dirty but it works
+
+from bop_scripts.preprocessing import remove_outliers
+from bop_scripts.nn_models import torchMLPClassifier_sklearn, torchMLP
+from bop_scripts.models import generate_model, fit_all_classifiers
+import torch
+import pandas as pd
+import numpy as np
+
+from sklearn.base import BaseEstimator
+
+qualitatives_variables = ["gender", "last_7", "last_30"]
+quantitatives_variables = ['age', 'temperature', 'heartrate', 'resprate', 'o2sat', 'sbp', 'dbp', 'pain']
+text_variables = ["chiefcomplaint"]
+labels = ['Cardiaque', 'Coagulation', 'Gazometrie', 'Glycemie_Sanguine', 'Hepato-Biliaire', 'IonoC', 'Lipase', 'NFS', 'Phospho-Calcique']
+variables_ranges = {
+    "temperature":[60,130],
+    "heartrate":[20, 300],
+    "resprate":[5, 50],
+    "o2sat":[20, 100],
+    "sbp":[40, 250],
+    "dbp":[20, 200],
+    "pain":[0,10]
+}
+device = "cuda:0" if torch.cuda.is_available() else "cpu"
+
+def torch_classifier_fn ():
+
+    torch_classifier = torchMLPClassifier_sklearn(
+        torchMLP,
+        early_stop_validations_size=10000,
+        early_stop=True,
+        early_stop_metric="f1",
+        early_stop_tol=1,
+        n_epochs=50,
+        device_train= device,
+        device_predict="cpu",
+        class_weight="balanced",
+        learning_rate=1e-4,
+        verbose=False
+    )
+
+    torch_sklearn_classifier = generate_model(
+            torch_classifier,
+            qualitatives_variables,
+            quantitatives_variables,
+            text_variables[0],
+            remove_outliers=True,
+            outliers_variables_ranges=variables_ranges,
+            CountVectorizer_kwargs={"ngram_range":(1,1), "max_features":600}
+    )
+
+    return torch_sklearn_classifier
+
+class Classifier(BaseEstimator):
+
+    def preprocess (self, X, y=None):
+        X_clean, outliers = remove_outliers(X, variables_ranges)
+        if y is not None:
+            y = pd.DataFrame(y, columns=labels)
+
+        return X_clean, y
+
+    def fit(self, X, y):
+        X, y = self.preprocess(X, y)
+        self.classifiers = fit_all_classifiers(
+            torch_classifier_fn,
+            X,
+            y,
+            verbose=False
+        )
+        return self
+
+    def predict_proba(self, X):
+        X, y = self.preprocess(X)
+        predictions = []
+        y_columns = labels
+        for y_column in y_columns:
+            predictions.append(self.classifiers[y_column].predict(X).reshape(-1, 1))
+        y_pred = np.concatenate(predictions, axis=1)
+
+        return y_pred
+
+    def predict(self, X):
+        y_pred = self.predict_proba(X)
+
+        return (y_pred >= 0.5)*1

Some files were not shown because too many files changed in this diff