|
@@ -0,0 +1,201 @@
|
|
|
+#%%
|
|
|
+from multiprocessing.sharedctypes import Value
|
|
|
+import sys
|
|
|
+import os
|
|
|
+sys.path.append(os.path.abspath(os.path.dirname(__file__))) # Dirty but it works
|
|
|
+
|
|
|
+import rampwf as rw
|
|
|
+from rampwf.prediction_types.detection import Predictions as DetectionPredictions
|
|
|
+from rampwf.utils.importing import import_module_from_source
|
|
|
+import pandas as pd
|
|
|
+import numpy as np
|
|
|
+from sklearn.model_selection import ShuffleSplit, train_test_split
|
|
|
+from sklearn.metrics import roc_auc_score
|
|
|
+from bop_scripts import preprocessing
|
|
|
+import itertools
|
|
|
+# %%
|
|
|
+# Parameters
|
|
|
+problem_title = 'Biology Order Prescription'
|
|
|
+data = "./data/mimic-iv.sqlite"
|
|
|
+lab_dictionnary = pd.read_csv("./config/lab_items.csv").set_index("item_id")["3"].to_dict()
|
|
|
+get_drugs, get_diseases = True, True
|
|
|
+# %%
|
|
|
+# Getting data
|
|
|
+if os.path.exists("./data/X.csv"):
|
|
|
+ X = pd.read_csv("./data/X.csv")
|
|
|
+else:
|
|
|
+ print("Creating X dataset (first run)")
|
|
|
+ X = preprocessing.generate_features_dataset(
|
|
|
+ database="./data/mimic-iv.sqlite",
|
|
|
+ get_drugs=get_drugs,
|
|
|
+ get_diseases=get_diseases
|
|
|
+ )
|
|
|
+ X["last_7"] = X["last_7"].fillna(0)
|
|
|
+ X["last_30"] = X["last_30"].fillna(0)
|
|
|
+ X.to_csv("./data/X.csv", header=True, index=False)
|
|
|
+
|
|
|
+if os.path.exists("./data/y.csv"):
|
|
|
+ y = pd.read_csv("./data/y.csv")
|
|
|
+else:
|
|
|
+ print("Creating y dataset (first run)")
|
|
|
+ y = preprocessing.generate_labels_dataset(
|
|
|
+ database="./data/mimic-iv.sqlite",
|
|
|
+ lab_dictionnary=lab_dictionnary,
|
|
|
+ )
|
|
|
+ y.to_csv("./data/y.csv", header=True, index=False)
|
|
|
+
|
|
|
+# Creating train and test
|
|
|
+if (os.path.exists("./data/train.csv") == False) or (os.path.exists("./data/test.csv") == False):
|
|
|
+ X_train, X_test, y_train, y_test = train_test_split(
|
|
|
+ X, y, test_size=10000, random_state=42
|
|
|
+ )
|
|
|
+
|
|
|
+ train = pd.merge(
|
|
|
+ X_train,
|
|
|
+ y_train,
|
|
|
+ left_on="stay_id",
|
|
|
+ right_on="stay_id"
|
|
|
+ ).reset_index(drop=True)
|
|
|
+ train.to_csv("./data/train.csv", header=True, index=False)
|
|
|
+
|
|
|
+ test = pd.merge(
|
|
|
+ X_test,
|
|
|
+ y_test,
|
|
|
+ left_on="stay_id",
|
|
|
+ right_on="stay_id"
|
|
|
+ ).reset_index(drop=True)
|
|
|
+ test.to_csv("./data/test.csv", header=True, index=False)
|
|
|
+
|
|
|
+# %%
|
|
|
+# Get rampwf evaluation
|
|
|
+class make_detection_fixed(DetectionPredictions):
|
|
|
+ def __init__ (self, *args, **kwargs):
|
|
|
+ super().__init__ (*args, **kwargs)
|
|
|
+
|
|
|
+ def set_valid_in_train (self, predictions, test_is):
|
|
|
+ self.y_pred = np.repeat(self.y_pred.reshape(-1, 1), predictions.y_pred.shape[1], axis=1)
|
|
|
+ self.y_pred[test_is] = predictions.y_pred
|
|
|
+
|
|
|
+ def set_slice(self, valid_indexes):
|
|
|
+ if isinstance(valid_indexes, list):
|
|
|
+ self.y_pred = self.y_pred[valid_indexes]
|
|
|
+
|
|
|
+ @classmethod
|
|
|
+ def combine(cls, predictions_list, index_list=None, greedy=False):
|
|
|
+ if index_list is None: # we combine the full list
|
|
|
+ index_list = range(len(predictions_list))
|
|
|
+ y_comb_list = [predictions_list[i].y_pred for i in index_list]
|
|
|
+
|
|
|
+ n_preds = y_comb_list[0].shape[0]
|
|
|
+ n_labels = y_comb_list[0].shape[1]
|
|
|
+
|
|
|
+ y_preds_combined = np.empty((n_preds, n_labels), dtype=object)
|
|
|
+
|
|
|
+ for i in range(n_preds):
|
|
|
+ preds_list = [preds[i,:] for preds in y_comb_list
|
|
|
+ if preds[i, 0] is not None]
|
|
|
+
|
|
|
+ if len(preds_list) == 1:
|
|
|
+ # no overlap in the different prediction sets -> simply take
|
|
|
+ # the single one that is not None
|
|
|
+ preds_combined = preds_list[0]
|
|
|
+ elif len(preds_list) > 1:
|
|
|
+ preds_combined, _ = combine_predictions(
|
|
|
+ preds_list, cls.iou_threshold, greedy=greedy)
|
|
|
+
|
|
|
+ if len(preds_list) > 0:
|
|
|
+ y_preds_combined[i,:] = preds_combined
|
|
|
+
|
|
|
+ combined_predictions = cls(y_pred=y_preds_combined)
|
|
|
+
|
|
|
+ return combined_predictions
|
|
|
+
|
|
|
+#%%
|
|
|
+def combine_predictions(preds_list, iou_threshold, greedy=False):
|
|
|
+ """
|
|
|
+ Combine multiple sets of predictions (of different models)
|
|
|
+ for a single patch.
|
|
|
+ """
|
|
|
+
|
|
|
+ combined_prediction = np.array(preds_list).mean(axis=0)
|
|
|
+ return combined_prediction, None
|
|
|
+
|
|
|
+#%%
|
|
|
+_features_name = X.columns.tolist()[1:]
|
|
|
+_prediction_label_names = y.columns.tolist()[1:]
|
|
|
+prediction_type = make_detection_fixed
|
|
|
+# %%
|
|
|
+class ROCAUC_fixed(rw.score_types.base.BaseScoreType):
|
|
|
+ is_lower_the_better = False
|
|
|
+ minimum = 0.0
|
|
|
+ maximum = 1.0
|
|
|
+
|
|
|
+ def __init__(self, index, name='roc_auc', precision=2):
|
|
|
+ self.name = name
|
|
|
+ self.precision = precision
|
|
|
+ self.index = index
|
|
|
+
|
|
|
+ def score_function(self, ground_truths, predictions):
|
|
|
+ """A hybrid score.
|
|
|
+ It tests the predicted _probability_ of the second class
|
|
|
+ against the true _label index_ (which is 0 if the first label is the
|
|
|
+ ground truth, and 1 if it is not, in other words, it is the
|
|
|
+ true probability of the second class). Thus we have to override the
|
|
|
+ `Base` function here
|
|
|
+ """
|
|
|
+
|
|
|
+ y_proba = predictions.y_pred[:, self.index]
|
|
|
+ y_true_proba = ground_truths.y_pred[:, self.index]
|
|
|
+
|
|
|
+ mask = (y_proba != None)
|
|
|
+ y_proba, y_true_proba = y_proba[mask], y_true_proba[mask]
|
|
|
+
|
|
|
+ return self.__call__(y_true_proba, y_proba)
|
|
|
+
|
|
|
+ def __call__(self, y_true_proba, y_proba):
|
|
|
+ return roc_auc_score(y_true_proba, y_proba)
|
|
|
+
|
|
|
+# %%
|
|
|
+class customClassifier(rw.workflows.Classifier):
|
|
|
+ def train_submission (self, module_path, X, y_array, train_is=None, prev_trained_model=None):
|
|
|
+ if train_is is None:
|
|
|
+ train_is = slice(None, None, None)
|
|
|
+
|
|
|
+ classifier = import_module_from_source(
|
|
|
+ os.path.join(module_path, self.element_names[0] + '.py'),
|
|
|
+ self.element_names[0],
|
|
|
+ sanitize=True
|
|
|
+ )
|
|
|
+ clf = classifier.Classifier()
|
|
|
+ if prev_trained_model is None:
|
|
|
+ clf.fit(X.iloc[train_is,:], y_array[train_is])
|
|
|
+ else:
|
|
|
+ clf.fit(
|
|
|
+ X.iloc[train_is,:], y_array[train_is], prev_trained_model)
|
|
|
+
|
|
|
+ return clf
|
|
|
+
|
|
|
+
|
|
|
+workflow = customClassifier()
|
|
|
+score_types = [ROCAUC_fixed(name=f"AUC {_prediction_label_names[i]}", index=i) for i in range(len(_prediction_label_names))]
|
|
|
+Predictions = prediction_type
|
|
|
+# %%
|
|
|
+def get_cv(X, y):
|
|
|
+ cv = ShuffleSplit(n_splits=3, test_size=0.2, random_state=42)
|
|
|
+ return cv.split(X, y)
|
|
|
+
|
|
|
+
|
|
|
+def _read_data(path, f_name):
|
|
|
+ df = pd.read_csv(os.path.join(path, 'data', f_name))
|
|
|
+ X = df[_features_name]
|
|
|
+ y = df[_prediction_label_names].astype("int").values
|
|
|
+
|
|
|
+ return X, y
|
|
|
+
|
|
|
+def get_train_data(path='.'):
|
|
|
+ f_name = 'train.csv'
|
|
|
+ return _read_data(path, f_name)
|
|
|
+
|
|
|
+def get_test_data(path='.'):
|
|
|
+ f_name = 'test.csv'
|
|
|
+ return _read_data(path, f_name)
|