|
@@ -0,0 +1,185 @@
|
|
|
+from sklearn.compose import ColumnTransformer
|
|
|
+from sklearn.pipeline import Pipeline, FeatureUnion
|
|
|
+from sklearn.preprocessing import OrdinalEncoder, StandardScaler
|
|
|
+from sklearn.feature_extraction.text import CountVectorizer
|
|
|
+from sklearn.impute import SimpleImputer, MissingIndicator
|
|
|
+from sklearn.model_selection import cross_val_score
|
|
|
+from sklearn.exceptions import ConvergenceWarning
|
|
|
+from .preprocessing import OutlierRemover, TextPreprocessing
|
|
|
+from warnings import simplefilter
|
|
|
+import itertools
|
|
|
+
|
|
|
+def generate_model (classifier, categorical_variables, continuous_variables, text_variable=None, missing_indicator=True, OrdinalEncoder_kwargs={}, StandardScaler_kwargs={}, CountVectorizer_kwargs={}, SimpleImputer_kwargs={}, MissingIndicator_kwargs={}, remove_outliers=False, outliers_variables_ranges=None):
|
|
|
+ """
|
|
|
+ Generate a model Pipeline containing features pre-processing
|
|
|
+
|
|
|
+ Parameters
|
|
|
+ ----------
|
|
|
+ classifier: sklearn classifier object with a fit and transform method
|
|
|
+ categorical_variables: [str], list of categorical variables
|
|
|
+ continuous_variables: [str], list of continuous variables
|
|
|
+ text_variable: [str], text variables, None if missing
|
|
|
+ missing_indicator: boolean, if True a missing indicator is added to the Pipeline
|
|
|
+ OrdinalEncoder_kwargs: dict, argument passed to the ordinal encoder
|
|
|
+ StandardScaler_kwargs: dict, argument passed to the standard scaler
|
|
|
+ CountVectorizer_kwargs: dict, argument passed to the count vectorizer
|
|
|
+ SimpleImputer_kwargs: dict, argument passed to the simple imputer
|
|
|
+ MissingIndicator_kwargs: dict, argument passed to the missing indicator
|
|
|
+ remove_outliers: boolean, if true the outliers are set to nan
|
|
|
+ outliers_variables_ranges: Dict(variable:[range_inf, range_sup], ...), dictionnary containing for each variable the inferior and superior range
|
|
|
+ """
|
|
|
+
|
|
|
+ variables = categorical_variables+continuous_variables
|
|
|
+ if text_variable is not None:
|
|
|
+ variables += [text_variable]
|
|
|
+
|
|
|
+ # Features pre-processing
|
|
|
+ features_preprocessing_list = []
|
|
|
+
|
|
|
+ ## Outliers removal :
|
|
|
+ if remove_outliers==True and outliers_variables_ranges is not None:
|
|
|
+ # Creating the range list
|
|
|
+ outliers_variables_range_clean = dict([(x, y) for x,y in outliers_variables_ranges.items() if x in variables])
|
|
|
+ features_preprocessing_list.append(("outliers", OutlierRemover(variables_ranges=outliers_variables_range_clean), list(outliers_variables_range_clean.keys())))
|
|
|
+
|
|
|
+ if len(categorical_variables) > 0:
|
|
|
+ features_preprocessing_list.append(("binary_encoder", OrdinalEncoder(**OrdinalEncoder_kwargs), categorical_variables))
|
|
|
+ if len(continuous_variables) > 0:
|
|
|
+ features_preprocessing_list.append(("continuous_scaling", StandardScaler(**StandardScaler_kwargs), continuous_variables))
|
|
|
+ if text_variable is not None:
|
|
|
+ # Text pre-processing then count vectorizer
|
|
|
+ text_preprocessing_pipeline = Pipeline([
|
|
|
+ ("text_preprocessing", TextPreprocessing()),
|
|
|
+ ("text_countvectorizer", CountVectorizer(**CountVectorizer_kwargs))
|
|
|
+ ])
|
|
|
+
|
|
|
+ features_preprocessing_list.append(("text_encoding", text_preprocessing_pipeline, text_variable))
|
|
|
+
|
|
|
+ # Imputation methods
|
|
|
+ imputation_list = []
|
|
|
+ imputation_list.append(("missing_imputer", SimpleImputer(**SimpleImputer_kwargs)))
|
|
|
+ if missing_indicator:
|
|
|
+ imputation_list.append(
|
|
|
+ ("missing_indicator", MissingIndicator(**MissingIndicator_kwargs))
|
|
|
+ )
|
|
|
+
|
|
|
+ # Creating the pipeline
|
|
|
+
|
|
|
+ features_preprocessing = ColumnTransformer(features_preprocessing_list)
|
|
|
+ full_preprocessing = Pipeline([
|
|
|
+ ("features", features_preprocessing),
|
|
|
+ ("impute_and_store_missing", FeatureUnion(imputation_list)),
|
|
|
+ ])
|
|
|
+
|
|
|
+ pipeline = Pipeline([
|
|
|
+ ("preprocessing", full_preprocessing),
|
|
|
+ ("lr", classifier)
|
|
|
+ ])
|
|
|
+
|
|
|
+ return pipeline
|
|
|
+
|
|
|
+def get_features_selection (X, y, classifier, categorical_variables, continuous_variables, text_variable=None, min_features=1, cv=3, metric_score="auc_score"):
|
|
|
+ """
|
|
|
+ This function return the metrics score according to each variables combination
|
|
|
+
|
|
|
+ Parameters
|
|
|
+ ----------
|
|
|
+ X: Pandas Dataframe of features
|
|
|
+ y: Pandas Dataframe of labels
|
|
|
+ classifier: sklearn classifier object with a fit and transform method
|
|
|
+ categorical_variables: [str], list of categorical variables
|
|
|
+ continuous_variables: [str], list of continuous variables
|
|
|
+ text_variable: [str], text variables, None if missing
|
|
|
+ min_features: int, minimum number of features to include in the model
|
|
|
+ cv: int, cross-validation splitting strategy according to the cross_val_score documentation
|
|
|
+ metric_score: str, metric score to evaluate the model, according to sklearn.metrics.SCORERS.keys()
|
|
|
+
|
|
|
+ Output
|
|
|
+ ------
|
|
|
+ Dictionnary containing a list of combination and associated score for each label
|
|
|
+ """
|
|
|
+
|
|
|
+ # Getting labels list
|
|
|
+ labels = y.columns.tolist()
|
|
|
+
|
|
|
+ # Getting the combinations
|
|
|
+ variables = categorical_variables + continuous_variables
|
|
|
+ if text_variable is not None:
|
|
|
+ variables += [text_variable]
|
|
|
+
|
|
|
+ variables_combinations = []
|
|
|
+ for i in range(min_features, len(variables)+1):
|
|
|
+ variables_combinations += itertools.combinations(variables, i)
|
|
|
+
|
|
|
+ # Getting global model
|
|
|
+ global_pipeline = generate_model(
|
|
|
+ classifier,
|
|
|
+ categorical_variables,
|
|
|
+ continuous_variables,
|
|
|
+ text_variable,
|
|
|
+ CountVectorizer_kwargs={"ngram_range":(1,1), "max_features":200}
|
|
|
+ )
|
|
|
+
|
|
|
+ # Preprocessing the data : we accept here to mix train/eval in feature scaling to reduce execution time
|
|
|
+ X_transformed = global_pipeline.steps[0][1].steps[0][1].fit_transform(X)
|
|
|
+
|
|
|
+ # Storing scores dictionnary
|
|
|
+ scores = dict(zip(
|
|
|
+ labels,
|
|
|
+ [[] for x in labels]
|
|
|
+ ))
|
|
|
+
|
|
|
+ # Getting the scores
|
|
|
+ for variable_combination in variables_combinations:
|
|
|
+ combination_categorical_variables, combination_continuous_variables = [x for x in categorical_variables if x in variable_combination], [x for x in continuous_variables if x in variable_combination]
|
|
|
+ combination_text_variable = text_variable if (text_variable is not None and text_variable in variable_combination) else None
|
|
|
+
|
|
|
+ pipeline = generate_model(
|
|
|
+ classifier,
|
|
|
+ combination_categorical_variables,
|
|
|
+ combination_continuous_variables,
|
|
|
+ combination_text_variable,
|
|
|
+ CountVectorizer_kwargs={"ngram_range":(1,1), "max_features":200}
|
|
|
+ )
|
|
|
+
|
|
|
+ # Get X index
|
|
|
+ if text_variable is not None:
|
|
|
+ variables_index = [variables.index(x) for x in variable_combination if x != text_variable]
|
|
|
+ if text_variable in variable_combination:
|
|
|
+ variables_index += list(range(X_transformed.shape[1]-200, X_transformed.shape[1]))
|
|
|
+ else:
|
|
|
+ variables_index = [variables.index(x) for x in variable_combination]
|
|
|
+
|
|
|
+ pipeline.steps[0][1].steps.pop(0) # Removing preprocessing step
|
|
|
+
|
|
|
+ for label in labels:
|
|
|
+ score = cross_val_score(pipeline, X_transformed[:,variables_index], y[label], cv=cv, scoring="roc_auc").mean().mean()
|
|
|
+ scores[label].append([variable_combination, score])
|
|
|
+
|
|
|
+ return scores
|
|
|
+
|
|
|
+def fit_all_classifiers(classifier, X_train, y_train, hide_warnings=True):
|
|
|
+ """
|
|
|
+ This function fill all the models for each label.
|
|
|
+
|
|
|
+ Parameters:
|
|
|
+ ----------
|
|
|
+ model: Classifier with a fit method
|
|
|
+ X: Pandas Dataframe of features
|
|
|
+ y: Pandas Dataframe of labels
|
|
|
+ hide_warnings: boolean, if true the warnings will be hidden
|
|
|
+
|
|
|
+ Output:
|
|
|
+ -------
|
|
|
+ Dictionnary containing a classifier per label
|
|
|
+ """
|
|
|
+
|
|
|
+ if hide_warnings == True:
|
|
|
+ simplefilter("ignore", category=ConvergenceWarning)
|
|
|
+
|
|
|
+ labels = y_train.columns.tolist()
|
|
|
+ classifiers = {}
|
|
|
+ for label in labels:
|
|
|
+ classifiers[label] = classifier.fit(X_train, y_train[label])
|
|
|
+
|
|
|
+ return classifiers
|