Browse Source

first release

Ali BELLAMINE 4 years ago
commit
0b4f946adc
7 changed files with 533 additions and 0 deletions
  1. 3 0
      .vscode/settings.json
  2. 1 0
      CHANGES.txt
  3. 3 0
      MANIFEST.in
  4. 4 0
      README.md
  5. 0 0
      __init__.py
  6. 509 0
      pandasToBrat.py
  7. 13 0
      setup.py

+ 3 - 0
.vscode/settings.json

@@ -0,0 +1,3 @@
+{
+    "python.pythonPath": "/home/ali/anaconda3/bin/python"
+}

+ 1 - 0
CHANGES.txt

@@ -0,0 +1 @@
+1.0 Initial release

+ 3 - 0
MANIFEST.in

@@ -0,0 +1,3 @@
+# include LICENSE 
+include README.md
+include CHANGES.txt

+ 4 - 0
README.md

@@ -0,0 +1,4 @@
+# pandasToBrat
+
+Ali BELLAMINE - contact@alibellamine.me
+_Last version : 1.0 - 28/10/2020_

+ 0 - 0
__init__.py


+ 509 - 0
pandasToBrat.py

@@ -0,0 +1,509 @@
+import re
+import os
+import pandas as pd
+import numpy as np
+
+def _getDictionnaryKeys(dictionnary):
+    """
+        Function that get keys from a dict object and flatten sub dict.
+    """
+    
+    keys_array = []
+    for key in dictionnary.keys():
+        keys_array.append(key)
+        if (type(dictionnary[key]) == type({})):
+            keys_array = keys_array+_getDictionnaryKeys(dictionnary[key])
+    return(keys_array)
+
+class pandasToBrat:
+    
+    """
+        Class for Pandas brat folder management.
+        For each brat folder, there is an instance of pandasToBrat.
+        It supports importation and exportation of configurations for relations and entities.
+        Documents importation and exportation.
+        Annotations and entities importation and exportation.
+
+        Inputs :
+            folder, str : path of brat folder
+    """
+    
+    def __init__(self, folder):
+        self.folder = folder
+        self.conf_file = 'annotation.conf'
+        
+        self.emptyDFCols = {
+            "annotations":["id","type_id", "word", "label", "start", "end"],
+            "relations":["id","type_id","relation","Arg1","Arg2"]
+        }
+        
+        # Adding '/' to folder path if missing
+        if(self.folder[-1] != '/'):
+            self.folder += '/'
+        
+        # Creating folder if do not exist
+        if (os.path.isdir(self.folder)) == False:
+            os.mkdir(self.folder)
+            
+        # Loading conf file if exists | creating empty conf file if not
+        self.read_conf()
+            
+    def _emptyData(self):
+        fileList = self._getFileList()
+        nb_files = fileList.shape[0]
+        
+        confirmation = input("Deleting all data ({} files), press y to confirm :".format(nb_files))
+        if confirmation == 'y':
+            fileList["filename"].apply(lambda x: os.remove(self.folder+x))
+            print("{} files deleted.".format(nb_files))
+            
+    def _generateEntitiesStr (self, conf, data = '', level = 0):
+        
+        if (type(conf) != type({})):
+            return data
+        
+        # Parsing keys
+        for key in conf.keys():
+            value = conf[key]
+
+            if value == True:
+                data += '\n'+level*'\t'+key
+            elif value == False:
+                data += '\n'+level*'\t'+'!'+key
+            elif type(value) == type({}):
+                data += '\n'+level*'\t'+key
+                data = self._generateEntitiesStr(value, data, level+1)
+
+        return data
+    
+    def _writeEntitiesLevel (self, conf, data, last_n = -1):
+        
+        for n in range(last_n,len(conf)):
+            # If empty : pass, if not the last line : pass
+            if (conf[n] != '' and n > last_n):
+                level = len(conf[n].split("\t"))-1
+                if (n+1 <= len(conf)): # Level of next item
+                    next_level = len(conf[n+1].split("\t"))-1
+                else:
+                    next_level = level
+                    
+                splitted_str = conf[n].split("\t")
+                str_clean = splitted_str[len(splitted_str)-1]
+                
+                if (level >= next_level): # On écrit les lignes de même niveau
+                    if (str_clean[0] == '!'):
+                        data[str_clean[1:]] = False
+                    else:
+                        data[str_clean] = True
+                    
+                    if (level > next_level):
+                        # On casse la boucle
+                        break
+                elif (level < next_level): # On écrit les lignes inférieurs par récurence
+                    splitted_str = conf[n].split("\t")
+                    last_n, data[str_clean] = self._writeEntitiesLevel(conf, {}, n)
+
+        return(n, data)
+    
+    def _readRelations(self, relations, entities = []):
+        data = {}
+
+        for relation in relations.split("\n"):
+            if relation != '':
+                relation_data = relation.split("\t")[0]
+                args = list(map(lambda x: x.split(":")[1], relation.split("\t")[1].split(", ")))
+                args_valid = list(filter(lambda x: x in entities, args))
+
+                if (len(args_valid) > 0):
+                    data[relation_data] = {"args":args_valid}
+                    
+        return data
+    
+    def _writeRelations(self, relations, entities = []):
+        data = ''
+        for relation in relations:
+            args_array = list(filter(lambda x: x in entities, relations[relation]["args"]))
+
+            if (len(args_array) > 0):
+                data += '\n'+relation+'\t'
+
+                for n in range(0, len(args_array)):
+                    data += int(bool(n))*', '+'Arg'+str(n+1)+':'+args_array[n]
+                    
+        return data
+    
+    def read_conf (self):
+        """
+            Get the current Brat configuration.
+            Output :
+                Dict containing "entities" and "relations" configurations.
+        """
+        
+        if (os.path.isfile(self.folder+self.conf_file)):
+            
+            # Reading file
+            file = open(self.folder+self.conf_file)
+            conf_str = file.read()
+            file.close()
+            
+            # Splitting conf_str
+            conf_data = re.split(re.compile(r"\[[a-zA-Z]+\]", re.DOTALL), conf_str)[1:]
+            
+            data = {}
+            
+            # Reading enteties
+            data["entities"] = self._writeEntitiesLevel(conf_data[0].split("\n"), {})[1]
+            
+            # Reading relations
+            entitiesKeys = _getDictionnaryKeys(data["entities"])
+            data["relations"] = self._readRelations(conf_data[1], entitiesKeys)
+            
+            return(data)
+            
+        else:
+            self.write_conf()
+            self.read_conf()
+    
+    def write_conf(self, entities = {}, relations = {}, events = {}, attributes = {}):
+        """
+            Write or overwrite configuration file.
+            It actually doesn't suppport events and attributes configuration data.
+
+            inputs :
+                entities, dict : dict containing the entities. If an entities do have children, his value is an other dict, otherwise, it is set as True.
+                relations, dict : dict containing the relations between entities, each key is a relation name, the value is a dict with a "args" key containing the list of related entities.
+        """
+        
+        # TODO : Add events and attributes support.
+
+        conf_str = ''
+        
+        # Entities
+        conf_str += '\n\n[entities]'
+        conf_str += self._generateEntitiesStr(entities)
+        
+        # relations
+        conf_str += '\n\n[relations]'
+        entitiesKeys = _getDictionnaryKeys(entities)
+        conf_str += self._writeRelations(relations, entitiesKeys)
+        
+        # attributes
+        conf_str += '\n\n[attributes]'
+
+        # events
+        conf_str += '\n\n[events]'
+        
+        # Write conf file
+        file = open(self.folder+self.conf_file,'w')
+        file.write(conf_str)
+        file.close()
+        
+    def _getFileList(self):
+        # Listing files
+        filesDF = pd.DataFrame({'filename':pd.Series(os.listdir(self.folder))})
+        filesDFSplitted = filesDF["filename"].str.split(".", expand = True)
+        filesDF["id"] = filesDFSplitted[0]
+        filesDF["filetype"] = filesDFSplitted[1]
+        
+        filesDF = filesDF[filesDF["filetype"].isin(["txt","ann"])]
+        
+        return(filesDF)
+        
+    def _parseData(self):
+        
+        # Listing files
+        filesDF = self._getFileList()
+        
+         # Getting data from txt and ann
+        filesDF_txt = filesDF.rename(columns = {"filename":"text_data"}).loc[filesDF["filetype"] == "txt", ["id","text_data"]]
+        filesDF_ann = filesDF.rename(columns = {"filename":"annotation"}).loc[filesDF["filetype"] == "ann", ["id","annotation"]]
+        dataDF = filesDF_txt.join(filesDF_ann.set_index("id"), on = "id")
+        dataDF["text_data"] = dataDF["text_data"].apply(lambda x: open(self.folder+x).read())
+        dataDF["annotation"] = dataDF["annotation"].apply(lambda x: open(self.folder+x).read())
+        
+        return(dataDF)
+
+    def read_text(self):
+
+        """
+            read_text
+            Get a pandas DataFrame containing the brat documents.
+
+            Input : None
+            Output : Pandas dataframe
+        """
+        
+        dataDF = self._parseData()
+                
+        return(dataDF[["id","text_data"]])
+
+    def read_annotation(self, ids = []):
+
+        """
+            read_annotation
+            Get annotations from the brat folder.
+            You can get specific annotation by filtering by id.
+
+            input :
+                ids, list (optionnal) : list of id for which you want the annotation data, if empty all annotations are returned.
+
+            output :
+                dict containing an annotations and relations data.
+        """
+        
+        data = {}
+        data["annotations"] = pd.DataFrame(columns=self.emptyDFCols["annotations"])
+        data["relations"] = pd.DataFrame(columns=self.emptyDFCols["relations"])
+        
+        dataDF = self._parseData()[["id","annotation"]]
+        dataDF = dataDF[(dataDF["annotation"].isna() == False) & (dataDF["annotation"] != '')] # Removing empty annotation
+        
+        # Filtering by ids
+        if (len(ids) > 0):
+            dataDF = dataDF[dataDF["id"].isin(pd.Series(ids).astype(str))]
+            
+        if (dataDF.shape[0] > 0):
+            
+            # Ann data to pandas
+            dataDF = dataDF.join(dataDF["annotation"].str.split("\n").apply(pd.Series).stack().reset_index(level = 0).set_index("level_0")).reset_index(drop = True).drop("annotation", axis = 1).rename(columns = {0: "annotation"})
+            dataDF = dataDF[dataDF["annotation"].str.len() > 0].reset_index(drop = True)
+            dataDF = dataDF.join(dataDF["annotation"].str.split("\t", expand = True).rename(columns = {0: 'type_id', 1: 'data', 2: 'word'})).drop("annotation", axis = 1)
+            dataDF["type"] = dataDF["type_id"].str.slice(0,1)
+            
+            ## Annotations
+            data["annotations"] = dataDF[dataDF["type"] == 'T']
+            if (data["annotations"].shape[0] > 0):
+                data["annotations"] = data["annotations"].join(data["annotations"]["data"].str.split(" ", expand = True).rename(columns = {0: "label", 1: "start", 2: "end"})).drop(columns = ["data","type"])
+
+            ## Relations
+            data["relations"] = dataDF[dataDF["type"] == 'R']
+
+            if (data["relations"].shape[0] > 0):
+                tmp_splitted = data["relations"]["data"].str.split(" ", expand = True).rename(columns = {0: "relation"})
+
+                ### Col names
+                rename_dict = dict(zip(list(tmp_splitted.columns.values[1:]), list("Arg"+tmp_splitted.columns.values[1:].astype(str).astype(object))))
+                tmp_splitted = tmp_splitted.rename(columns = rename_dict)
+
+                ### Merging data
+                tmp_splitted = tmp_splitted[["relation"]].join(tmp_splitted.loc[:,tmp_splitted.columns[tmp_splitted.columns != 'relation']].applymap(lambda x: x.split(":")[1]))
+                data["relations"] = data["relations"].join(tmp_splitted).drop(columns = ["data","type","word"])
+        
+        return(data)
+    
+    def _write_function(self, x, filetype = "txt", overwrite = False):
+        
+        filenames = []
+        
+        if (filetype == 'txt' or filetype == 'both'):
+            filenames.append(self.folder+str(x["filename"])+'.txt')
+            
+        if (filetype == 'ann' or filetype == 'both'):
+            filenames.append(self.folder+str(x["filename"])+'.ann')
+        
+        for filename in filenames:
+            try:
+                open(str(filename), "r")
+                is_file = True
+            except FileNotFoundError:
+                is_file = False
+                        
+            if ((is_file == False) or (overwrite == True)):
+                file = open(str(filename), "w")
+                file.write(x["content"])
+                file.close()
+    
+    def write_text(self, text_id, text, empty = False, overWriteAnnotations = False):
+        
+        """
+            write_text
+            Send text data from the brat folder.
+
+            input :
+                text_id, pd.Series : pandas series containing documents ids
+                text, pd.Series : pandas series containing documents text in the same order as text_id
+                empty, boolean : if True the brat folder is emptyied of all but configuration data (text and ann files) before writting
+                overwriteAnnotations, boolean : if True, the current annotation files are replaced by blank one
+        """
+
+        if overWriteAnnotations == True: # On controle la façon dont la variable est écrite
+            overwriteAnn = True
+        else:
+            overwriteAnn = False
+        
+        if (type(text) == type(pd.Series()) and type(text_id) == type(pd.Series()) and text.shape[0] == text_id.shape[0]):
+            
+            # ID check : check should be smaller than text : check if not inverted
+            if (text_id.astype(str).str.len().max() < text.astype(str).str.len().max()):
+                
+                # empty : option to erase existing data
+                if (empty):
+                    self._emptyData()
+
+                # Writting data
+                print("Writting data")
+                df_text = pd.DataFrame({"filename":text_id, "content":text})
+                df_ann = pd.DataFrame({"filename":text_id, "content":""})
+                
+                df_text.apply(lambda x: self._write_function(x, filetype = "txt", overwrite = True), axis = 1)
+                df_ann.apply(lambda x: self._write_function(x, filetype = "ann", overwrite = overwriteAnn), axis = 1)
+                print("data written.")
+                
+            else:
+                raise ValueError('ID is larger than text, maybe you inverted them.')
+        
+        else:
+            raise ValueError('Incorrect variable type, expected two Pandas Series of same shape.')
+                
+    def write_annotations(self, df, text_id, word, label, start, end, overwrite = False):
+        
+        """
+            write_annotations
+            Send annotation data from the brat folder. Useful to pre-anotate some data.
+
+            input :
+                df, pd.Dataframe : dataframe containing annotations data, should contains the text id, the annotated word, the annotated label, the start and end offset.
+                text_id, str : name of the column in df which contains the document id
+                word, str : name of the column in df which contains the annotated word
+                label, str : name of the column in df which contains the label of the annotated word
+                start, str : name of the column in df which contains the start offset
+                end, str : name of the column in df which contains the end offset
+                overwrite, boolean : if True, the current annotation files are replaced by new data, otherwise, the new annotations are merged with existing one
+        """
+        
+        # Checking data types
+        if (type(df) == type(pd.DataFrame())):
+            
+            # Loading df
+            df = df.rename(columns = {text_id:"id",word:"word",label:"label",start:"start",end:"end"})
+            df["type_id"] = df.groupby("id").cumcount()+1
+            
+            # List of ids
+            ids = df["id"].unique()
+
+            # Loading current data
+            current_annotation = self.read_annotation(ids)            
+            current_annotations = current_annotation["annotations"]
+            tmaxDFAnnotations = current_annotations.set_index(["id"])["type_id"].str.slice(1,).astype(int).reset_index().groupby("id").max().rename(columns = {"type_id":"Tmax"})
+            
+            if (overwrite == True):
+                df["type_id"] = "T"+df["type_id"].astype(str)
+                new_annotations = df
+            else:
+                df = df.join(tmaxDFAnnotations, on = "id").fillna(0)
+                df["type_id"] = "T"+(df["type_id"]+df["Tmax"]).astype(int).astype(str)
+                df = df.drop(columns = ["Tmax"])
+                
+                new_annotations = pd.concat((current_annotations, df[self.emptyDFCols["annotations"]])).reset_index(drop = True)
+            
+            new_annotations.drop_duplicates() ## Removing duplicates
+            
+            # Injecting new annotations
+            current_annotation["annotations"] = new_annotations
+            
+            # Calling write function
+            self._write_annotation(current_annotation["annotations"], current_annotation["relations"])            
+            
+        else:
+            raise ValueError('Incorrect variable type, expected a Pandas DF.')
+            
+               
+    def write_relations(self, df, text_id, relation, overwrite = False):
+        
+        # Checking data types
+        if (type(df) == type(pd.DataFrame())):
+            
+            # Loading df
+            df = df.rename(columns = {text_id:"id",relation:"relation"})
+            df["type_id"] = df.groupby("id").cumcount()+1 # type_id
+            
+            # Columns names
+            old_columns = df.columns[np.isin(df.columns, ["id", "relation","type_id"]) == False]
+            new_columns = "Arg"+np.array(list(range(1,len(old_columns)+1))).astype(str).astype(object)
+            df = df.rename(columns = dict(zip(old_columns, new_columns)))
+            
+            # List of ids
+            ids = df["id"].unique()
+
+            # Loading current data
+            current_annotation = self.read_annotation(ids)            
+            current_relations = current_annotation["relations"]
+            rmaxDFrelations = current_relations.set_index(["id"])["type_id"].str.slice(1,).astype(int).reset_index().groupby("id").max().rename(columns = {"type_id":"Rmax"})
+
+            if (overwrite == True):
+                df["type_id"] = "R"+df["type_id"].astype(str)
+                new_relations = df
+            else:
+                df = df.join(rmaxDFrelations, on = "id").fillna(0)
+                df["type_id"] = "R"+(df["type_id"]+df["Rmax"]).astype(int).astype(str)
+                df = df.drop(columns = ["Rmax"])
+                
+                # Adding missing columns
+                if (len(df.columns) > len(current_relations.columns)):
+                    for column in df.columns[np.isin(df.columns, current_relations.columns) == False]:
+                        current_relations[column] = np.nan
+                else:
+                    for column in current_relations.columns[np.isin(current_relations.columns, df.columns) == False]:
+                        df[column] = np.nan
+                
+                new_relations = pd.concat((current_relations, df[current_relations.columns])).reset_index(drop = True)
+                
+            new_relations.drop_duplicates() ## Removing duplicates
+            
+            # Injecting new annotations
+            current_annotation["relations"] = new_relations
+            
+            # Calling write function
+            self._write_annotation(current_annotation["annotations"], current_annotation["relations"])
+            
+        else:
+            raise ValueError('Incorrect variable type, expected a Pandas DF.')
+            
+    def _generate_annotations_str (self, annotations):
+        
+        annotations = annotations.reset_index(drop = True)
+        annotations["label_span"] = annotations[["label","start","end"]].apply(lambda x: ' '.join(x.astype(str).values), axis = 1)
+        annotations_str = '\n'.join(annotations[["type_id","label_span","word"]].apply(lambda x: '\t'.join(x.astype(str).values), axis = 1).values)
+
+        return(annotations_str)
+        
+    def _generate_relations_str (self, relations):
+            
+        
+        relations = relations.fillna('').applymap(lambda x: '' if x == 'nan' else x) #cleaning data
+        columns = relations.columns[np.isin(relations.columns, ["id","type_id","relation"]) == False].values.tolist()
+        boolmap = relations[columns].transpose().applymap(lambda x: int(x != ''))
+        rct = relations[columns].transpose()
+
+        temp_relations = (boolmap*(np.array(np.repeat(rct.index,rct.shape[1])).reshape(rct.shape)+':')+rct.astype(str)).transpose()
+
+        relations_str = '\n'.join(relations[["type_id","relation"]].join(temp_relations[columns]).apply(lambda x: '\t'.join(x.values), axis = 1).values)
+
+        return(relations_str)
+    
+    def _write_file(self, data):
+        file = open(self.folder+str(data["id"])+".ann", "w")
+        file.write(data["str_to_write"])
+        file.close()
+    
+    def _write_annotation(self,annotations,relations):
+        
+        # Checking data types
+        if (type(annotations) == type(pd.DataFrame()) and type(relations) == type(pd.DataFrame())):
+            
+            # Gerenating str
+            data_annotations = annotations.groupby("id").agg(lambda x: self._generate_annotations_str(x)).iloc[:,0]
+            data_relations = relations.groupby("id").agg(lambda x: self._generate_relations_str(x)).iloc[:,0]
+
+            # Merging data
+            data = pd.DataFrame({"annotations":data_annotations, "relations":data_relations}).fillna('')
+            data["str_to_write"] = data.apply(lambda x : '\n'.join(x.values), axis = 1)
+            data = data.reset_index().rename(columns = {"index":"id"})
+            
+            # Writting files
+            data.apply(self._write_file, axis = 1)
+            
+            return(data)
+            
+        else:
+            raise ValueError('Incorrect variable type, expected a Pandas DF.')

+ 13 - 0
setup.py

@@ -0,0 +1,13 @@
+from setuptools import setup, find_packages
+ 
+ 
+setup(name='pysparkRadiologyReportParser',
+ 
+      version='1.0',
+      license='',
+      author='Ali BELLAMINE',
+      author_email='contact@alibellamine.me',
+      description='Functions for radiology report parsing.',
+      packages=find_packages(),
+      long_description=open('README.md').read(),
+    )