import sqlite3
import pandas as pd
# Sqlite connection
conn = sqlite3.connect("./data/mimic-iv.sqlite")
# Classification des items de biologie
items = pd.read_csv("./config/lab_items.csv").dropna()
items_list = items["item_id"].astype("str").tolist()
# Classification ATC des médicaments
drugs_rules = pd.read_csv("./config/atc_items.csv")
drugs_rules_list = drugs_rules["gsn"].drop_duplicates().astype("str").tolist()
# Création d'un index pour accélérer les requêtes
conn.execute("CREATE INDEX IF NOT EXISTS biological_index ON labevents (stay_id, itemid)");
stays = pd.read_sql(f"""
SELECT
s.stay_id,
s.intime intime,
p.gender gender,
p.anchor_age age,
t.temperature,
t.heartrate,
t.resprate,
t.o2sat,
t.sbp,
t.dbp,
t.pain,
t.chiefcomplaint
FROM edstays s
LEFT JOIN patients p
ON p.subject_id = s.subject_id
LEFT Join triage t
ON t.stay_id = s.stay_id
""", conn)
stays["intime"] = pd.to_datetime(stays["intime"])
stays["gender"] = stays["gender"].astype("string") # Pas de valeurs manquantes en gender
stays["chiefcomplaint"] = stays["chiefcomplaint"].fillna("").astype("string") # ¨Chiefcomplaint manquant = chiefcomplaint vide
drugs = pd.read_sql(f"""
SELECT stay_id, gsn
FROM medrecon
WHERE gsn IN ({','.join(drugs_rules_list)})
""", conn)
# Liste des codes ATC pour chaque séjour
atc_stays = pd.merge(
drugs,
drugs_rules,
left_on="gsn",
right_on="gsn"
).drop_duplicates(["stay_id","atc"])
atc_stays["atc_2"] = atc_stays["atc"].str.slice(0, 3)
# Considérons 2 niveaux de granularité
## Le code ATC complet (Anatomique, Thérapeutique et Pharmacologique), ATC IV
atc_stays_pivoted_4 = pd.pivot_table(
atc_stays[["stay_id","atc"]] \
.assign(value=1),
columns=["atc"],
index=["stay_id"],
values="value"
).fillna(0).reset_index()
## Le code ATC 2 (Anatomique et Thérapeutique)
atc_stays_pivoted_2 = pd.pivot_table(
atc_stays[["stay_id","atc_2"]] \
.drop_duplicates() \
.rename(columns={"atc_2":"atc"}) \
.assign(value=1),
columns=["atc"],
index=["stay_id"],
values="value"
).fillna(0).reset_index()
stays_atc_4 = pd.merge(
stays,
atc_stays_pivoted_4,
left_on="stay_id",
right_on="stay_id",
how="left"
)
stays_atc_2 = pd.merge(
stays,
atc_stays_pivoted_2,
left_on="stay_id",
right_on="stay_id",
how="left"
)
stays_atc_4[atc_stays_pivoted_4.columns[1:]] = stays_atc_4[atc_stays_pivoted_4.columns[1:]].fillna(0)
stays_atc_2[atc_stays_pivoted_2.columns[1:]] = stays_atc_2[atc_stays_pivoted_2.columns[1:]].fillna(0)
# Ecriture du featues dataset
# On écrit en parquet pour optimiser le stockage et les temps d'io
stays_atc_2.sort_values("stay_id").reset_index(drop=True).to_parquet("./data/features_atc2.parquet", engine="pyarrow", index=False)
stays_atc_4.sort_values("stay_id").reset_index(drop=True).to_parquet("./data/features_atc4.parquet", engine="pyarrow", index=False)
labs = pd.read_sql(f"""
SELECT
le.stay_id,
le.itemid item_id
FROM labevents le
WHERE le.itemid IN ('{"','".join(items_list)}')
GROUP BY
le.stay_id,
le.itemid
""", conn)
labs_deduplicate = pd.merge(
items[["item_id","3"]].rename(columns={"3":"label"}),
labs,
left_on="item_id",
right_on="item_id"
) \
.drop_duplicates(["stay_id", "label"])[["stay_id","label"]] \
.reset_index(drop=True)
labs_deduplicate_pivot = pd.pivot_table(
labs_deduplicate.assign(value=1),
index=["stay_id"],
columns=["label"],
values="value"
).fillna(0)
labs_deduplicate_pivot_final = labs_deduplicate_pivot.join(
stays[["stay_id"]].set_index("stay_id"),
how="right"
).fillna(0).astype("int8").reset_index()
labs_deduplicate_pivot_final.sort_values("stay_id").reset_index(drop=True).to_parquet("./data/labels.parquet", index=False)