123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201 |
- #%%
- from multiprocessing.sharedctypes import Value
- import sys
- import os
- sys.path.append(os.path.abspath(os.path.dirname(__file__))) # Dirty but it works
- import rampwf as rw
- from rampwf.prediction_types.detection import Predictions as DetectionPredictions
- from rampwf.utils.importing import import_module_from_source
- import pandas as pd
- import numpy as np
- from sklearn.model_selection import ShuffleSplit, train_test_split
- from sklearn.metrics import roc_auc_score
- from bop_scripts import preprocessing
- import itertools
- # %%
- # Parameters
- problem_title = 'Biology Order Prescription'
- data = "./data/mimic-iv.sqlite"
- lab_dictionnary = pd.read_csv("./config/lab_items.csv").set_index("item_id")["3"].to_dict()
- get_drugs, get_diseases = True, True
- # %%
- # Getting data
- if os.path.exists("./data/X.csv"):
- X = pd.read_csv("./data/X.csv")
- else:
- print("Creating X dataset (first run)")
- X = preprocessing.generate_features_dataset(
- database="./data/mimic-iv.sqlite",
- get_drugs=get_drugs,
- get_diseases=get_diseases
- )
- X["last_7"] = X["last_7"].fillna(0)
- X["last_30"] = X["last_30"].fillna(0)
- X.to_csv("./data/X.csv", header=True, index=False)
- if os.path.exists("./data/y.csv"):
- y = pd.read_csv("./data/y.csv")
- else:
- print("Creating y dataset (first run)")
- y = preprocessing.generate_labels_dataset(
- database="./data/mimic-iv.sqlite",
- lab_dictionnary=lab_dictionnary,
- )
- y.to_csv("./data/y.csv", header=True, index=False)
- # Creating train and test
- if (os.path.exists("./data/train.csv") == False) or (os.path.exists("./data/test.csv") == False):
- X_train, X_test, y_train, y_test = train_test_split(
- X, y, test_size=10000, random_state=42
- )
- train = pd.merge(
- X_train,
- y_train,
- left_on="stay_id",
- right_on="stay_id"
- ).reset_index(drop=True)
- train.to_csv("./data/train.csv", header=True, index=False)
- test = pd.merge(
- X_test,
- y_test,
- left_on="stay_id",
- right_on="stay_id"
- ).reset_index(drop=True)
- test.to_csv("./data/test.csv", header=True, index=False)
- # %%
- # Get rampwf evaluation
- class make_detection_fixed(DetectionPredictions):
- def __init__ (self, *args, **kwargs):
- super().__init__ (*args, **kwargs)
- def set_valid_in_train (self, predictions, test_is):
- self.y_pred = np.repeat(self.y_pred.reshape(-1, 1), predictions.y_pred.shape[1], axis=1)
- self.y_pred[test_is] = predictions.y_pred
- def set_slice(self, valid_indexes):
- if isinstance(valid_indexes, list):
- self.y_pred = self.y_pred[valid_indexes]
- @classmethod
- def combine(cls, predictions_list, index_list=None, greedy=False):
- if index_list is None: # we combine the full list
- index_list = range(len(predictions_list))
- y_comb_list = [predictions_list[i].y_pred for i in index_list]
- n_preds = y_comb_list[0].shape[0]
- n_labels = y_comb_list[0].shape[1]
- y_preds_combined = np.empty((n_preds, n_labels), dtype=object)
- for i in range(n_preds):
- preds_list = [preds[i,:] for preds in y_comb_list
- if preds[i, 0] is not None]
- if len(preds_list) == 1:
- # no overlap in the different prediction sets -> simply take
- # the single one that is not None
- preds_combined = preds_list[0]
- elif len(preds_list) > 1:
- preds_combined, _ = combine_predictions(
- preds_list, cls.iou_threshold, greedy=greedy)
- if len(preds_list) > 0:
- y_preds_combined[i,:] = preds_combined
- combined_predictions = cls(y_pred=y_preds_combined)
-
- return combined_predictions
- #%%
- def combine_predictions(preds_list, iou_threshold, greedy=False):
- """
- Combine multiple sets of predictions (of different models)
- for a single patch.
- """
- combined_prediction = np.array(preds_list).mean(axis=0)
- return combined_prediction, None
- #%%
- _features_name = X.columns.tolist()[1:]
- _prediction_label_names = y.columns.tolist()[1:]
- prediction_type = make_detection_fixed
- # %%
- class ROCAUC_fixed(rw.score_types.base.BaseScoreType):
- is_lower_the_better = False
- minimum = 0.0
- maximum = 1.0
- def __init__(self, index, name='roc_auc', precision=2):
- self.name = name
- self.precision = precision
- self.index = index
- def score_function(self, ground_truths, predictions):
- """A hybrid score.
- It tests the predicted _probability_ of the second class
- against the true _label index_ (which is 0 if the first label is the
- ground truth, and 1 if it is not, in other words, it is the
- true probability of the second class). Thus we have to override the
- `Base` function here
- """
- y_proba = predictions.y_pred[:, self.index]
- y_true_proba = ground_truths.y_pred[:, self.index]
-
- mask = (y_proba != None)
- y_proba, y_true_proba = y_proba[mask], y_true_proba[mask]
-
- return self.__call__(y_true_proba, y_proba)
- def __call__(self, y_true_proba, y_proba):
- return roc_auc_score(y_true_proba, y_proba)
- # %%
- class customClassifier(rw.workflows.Classifier):
- def train_submission (self, module_path, X, y_array, train_is=None, prev_trained_model=None):
- if train_is is None:
- train_is = slice(None, None, None)
-
- classifier = import_module_from_source(
- os.path.join(module_path, self.element_names[0] + '.py'),
- self.element_names[0],
- sanitize=True
- )
- clf = classifier.Classifier()
- if prev_trained_model is None:
- clf.fit(X.iloc[train_is,:], y_array[train_is])
- else:
- clf.fit(
- X.iloc[train_is,:], y_array[train_is], prev_trained_model)
- return clf
- workflow = customClassifier()
- score_types = [ROCAUC_fixed(name=f"AUC {_prediction_label_names[i]}", index=i) for i in range(len(_prediction_label_names))]
- Predictions = prediction_type
- # %%
- def get_cv(X, y):
- cv = ShuffleSplit(n_splits=3, test_size=0.2, random_state=42)
- return cv.split(X, y)
- def _read_data(path, f_name):
- df = pd.read_csv(os.path.join(path, 'data', f_name))
- X = df[_features_name]
- y = df[_prediction_label_names].astype("int").values
- return X, y
- def get_train_data(path='.'):
- f_name = 'train.csv'
- return _read_data(path, f_name)
- def get_test_data(path='.'):
- f_name = 'test.csv'
- return _read_data(path, f_name)
|