from matplotlib import pyplot as plt from sklearn.feature_extraction.text import CountVectorizer from sklearn.metrics import roc_curve, roc_auc_score, precision_score, recall_score, accuracy_score, ConfusionMatrixDisplay, f1_score, confusion_matrix from wordcloud import WordCloud import seaborn as sns import itertools import pandas as pd import numpy as np import random from .preprocessing import get_Xy_df def plot_all_scatter (X, variables, ncols=3, figsize=(20,10)): """ This function produce a scatter view of all the variables from a dataset Parameters ---------- X: Pandas Dataframe variables: [str], list of variables name n_cols: int, number of columns in the plot figsize: (int, int), tuple of the figure size """ # Getting nrows nrows = (len(variables) // ncols) + 1*((len(variables) % ncols) != 0) figs, axs = plt.subplots(nrows, ncols, figsize=figsize) axs = axs.flatten() for i in range(len(variables)): variable = variables[i] sns.scatterplot( data=X[variable].value_counts(), ax = axs[i] ) axs[i].ticklabel_format(style='scientific', axis='x', scilimits=(0, 4)) axs[i].set_xlabel("Valeur") axs[i].set_ylabel("Nombre d'occurences") axs[i].set_title(variable) plt.tight_layout() def plot_missing_outcome(X, y, features, labels, figsize=(20,10)): """ This function produce a line plot of all the missings values according to the outcomes values Parameters ---------- X: Pandas Dataframe of features y: Pandas Dataframe of labels features: [str], list of variables name labels: [str], list of output name figsize: (int, int), tuple of the figure size """ Xy = get_Xy_df(X, y) data = Xy[labels].join( pd.DataFrame(Xy[features].isna().astype("int").sum(axis=1)) ).rename(columns={0:"n_NA"}) \ .groupby("n_NA") \ .agg(lambda x: x.sum()/x.count())*100 fig,ax = plt.subplots(1, 1, figsize=figsize) sns.lineplot( data=pd.melt(data.reset_index(), id_vars="n_NA",value_vars=data.columns), hue="variable", x="n_NA", y="value", ax=ax ) ax.set_xlabel("Nombre de valeurs manquantes") ax.set_ylabel("Pourcentage d'examen prescrit") ax.set_ylim(0,100) ax.set_title("% de prescription de bilans en fonction du nombre de variables manquantes") def plot_missing_bar(X, features, figsize=(15,10)): """ This function produce a bar plot of all the missings values Parameters ---------- X: Pandas Dataframe of features features: [str], list of variables name figsize: (int, int), tuple of the figure size """ fig, ax = plt.subplots(1,1, figsize=figsize) data = ((X[features].isna()*1).mean()*100).reset_index() sns.barplot( data=data, x="index", y=0, ax=ax ) ax.set_title("% de valeurs manquantes par variable") ax.set_xlabel("Variable") ax.set_ylim(0,100) ax.set_ylabel("% de valeurs manquantes") def plot_correlation(X, features, figsize=(10,6)): """ This function produce a heatmap plot of all variables correlation values Parameters ---------- X: Pandas Dataframe of features features: [str], list of variables name figsize: (int, int), tuple of the figure size """ fig, ax = plt.subplots(figsize = figsize) correlation_matrix = X[features].corr() sns.heatmap( correlation_matrix, cmap='YlGn', ax=ax ) ax.set_title('Corrélations entre les features'); def plot_labels_frequencies_and_correlation(y, labels, figsize=(30,10)): """ This function produce a bar of label proportion and heatmap plot of all labels correlation values Parameters ---------- y: Pandas Dataframe of labels labels: [str], list of labels name figsize: (int, int), tuple of the figure size """ fig, axs = plt.subplots(1, 2, figsize=figsize) axs = axs.flatten() # Plotting labels proportion labels_data = ((y[labels].sum()/y.shape[0])*100).reset_index().round(2) sns.barplot( data=labels_data, x="index", y=0, ax=axs[0] ) axs[0].tick_params(labelrotation=45) axs[0].set_ylim(0,100) axs[0].set_title("Proportion d'examens biologiques réalisés") axs[0].set_xlabel("Examens biologiques") axs[0].set_ylabel("% d'examens réalisés") # Plotting correlation correlation_data = y[labels].corr() sns.heatmap(correlation_data, ax=axs[1], cmap='YlGn') axs[1].set_title('Correlations entre les labels'); def plot_box_variable_label_distribution(X, y, features, labels): """ This function produce a box plot of the features distribution according to the variable status Parameters ---------- X: Pandas Dataframe of features y: Pandas Dataframe of labels features: [str], list of variables name labels: [str], list of output name """ # Generating colormap colors = sns.color_palette("muted", 2*len(features)) # Getting Xy dataframe Xy = get_Xy_df(X, y) fig = plt.figure(constrained_layout=True, figsize=(5*len(labels),2*len(features))) figs = fig.subfigures(len(labels), 1) axs = [x.subplots(1, len(features)) for x in figs] for i in range(len(labels)): figs[i].suptitle(f"Distribution des variables selon le statut {labels[i]} (réalisé (1) ou non (0))") for j in range(len(features)): feature_name, variable_name = features[j], labels[i] axs[i][j].set_title(feature_name) axs[i][j].set_xlabel(variable_name) axs[i][j].set_ylabel(feature_name) sns.boxplot( data=Xy, ax=axs[i][j], x=variable_name, y=feature_name, showfliers=False, palette=colors[j*2:(j+1)*2] ) fig.suptitle("Distribution des features en fonction du label") plt.show() def plot_odd_word_wc(X, y, text_column, labels, min_occurrence=3, ncols=5): """ This function produce a word cloud of words odd-ratio (odd-ratio of seing the word given the label) Parameters ---------- X: Pandas Dataframe of features y: Pandas Dataframe of labels text_column: str, name of the column containing the text labels: [str], list of output name min_occurrence: int, minimum number of ocurrence of the word ncols: int, number of columns in the output plot """ # Computing nrows an getting the structure nrows = len(labels)//ncols + 1*((len(labels)%ncols) != 0) fig = plt.figure(constrained_layout=True, figsize=(4*ncols, 5*nrows)) figs = fig.subfigures(nrows, ncols) figs = figs.flatten() axs = [x.subplots(2, 1) for x in figs] def rand_color_label0(*args, **kwargs): return "rgb(0, 100, {})".format(random.randint(200, 455)) def rand_color_label1(*args, **kwargs): return "rgb({}, 0, 100)".format(random.randint(200, 455)) color_fn = [rand_color_label0, rand_color_label1] # Getting Xy Xy = get_Xy_df(X, y) # Text preprocessing Xy = Xy.dropna(subset=[text_column]) Xy["text_preprocessed"] = Xy[text_column] \ .replace(",", " ").str.lower() # Generating the plots for i in range(len(labels)): label = labels[i] figs[i].suptitle(label) # Filtering text data text_data = Xy[[label, "chiefcomplaint"]].dropna().groupby(label).agg(lambda x: " ".join(x))["chiefcomplaint"] # Training countvectorizer model then counting the odd cv = CountVectorizer().fit(text_data) text_data_array = (cv.transform(text_data).toarray()+1) # Smoothing count text_data_array[:,np.where(text_data_array <= (min_occurrence+1))[1]] = 1 # Set the odds to neutral odd text_data_array = text_data_array/text_data_array.sum(axis=1).reshape(2, -1) for j, text in text_data.items(): values = (text_data_array[j,:]/(text_data_array[1-j,:])).tolist() axs[i][j].imshow( WordCloud(background_color = "white", relative_scaling=0.2, max_words = 25, color_func=color_fn[j]).generate_from_frequencies( frequencies=dict(zip( cv.get_feature_names(), values )) ) ) axs[i][j].set_xlabel(f"{j}") fig.suptitle("WordCloud selon le label") plt.show() def vizualize_features_selection (scores, score_name, f_precision=2, n_score_max=5, ncols=3): """ This function produce an heatmap of metrics score according to each variables combination Parameters ---------- scores: Dictionnary containing a list of combination and associated score for each label produced by the .models.get_features_selection function score_name: str, Name of the score f_precision: int, floating point precision is the number of decimal to keep n_score_max: int, maximum number of scores to display ncols: int, number of columns in the output plot """ # Creating a dataframe containing the scores scores_df = [] for key, value in scores.items(): scores_df_temp = pd.DataFrame( [dict(zip(x[0], [x[1] for i in range(len(x[0]))])) for x in value] ).assign(score=lambda x: x.max(axis=1)) scores_df_temp.iloc[:,:-1] = (scores_df_temp.iloc[:,:-1].fillna("")*0).astype("str").replace("0.0", "x") scores_df_temp["name"] = key scores_df.append(scores_df_temp.sort_values("score", ascending=False)) scores_df = pd.concat(scores_df).reset_index(drop=True) scores_df["n_features"] = (scores_df == "x").sum(axis=1) scores_df[score_name] = scores_df["score"].round(f_precision) scores_df = scores_df.sort_values(["name", "roc_auc", score_name], ascending=[True, False, True]).drop_duplicates(["name", score_name]) # Plotting the dataframe scores_list = scores_df["name"].drop_duplicates().values.tolist() ncols = 3 nrows = len(scores_list)//ncols + (len(scores_list)%ncols != 0)*1 fig, axs = plt.subplots(nrows, ncols, figsize=(5*ncols,4*nrows)) axs = axs.flatten() for i in range(len(scores_list)): score = scores_list[i] sns.heatmap( (scores_df.query(f"name == '{score}'").set_index("roc_auc").head(n_score_max).iloc[:, :-3] == 'x')*1, ax=axs[i] ) axs[i].set_title(score) fig.suptitle(f"{score_name} according to features included in the model") plt.tight_layout() def display_model_performances(classifier, X_test, y_test, algorithm_name="", threshold=0.5, ncols=1): """ This function produce a vizualization of the model performances Parameters ---------- classifier: python object which should contains a predict and a predict_proba method, if many labels a dict in the format {label:classifier,...} is expected X_test: pandas dataframe of the features y_test: pandas dataframe of the labels algorithm_name: str, name of the algorithm threshold: float, threshold for classification ncols: int, number of columns """ # Checking type of y_test if isinstance(y_test, pd.Series): y_test = pd.DataFrame(y_test) # Checking if one or many labels if len(y_test.shape) > 1 and y_test.shape[1] > 1: if isinstance(classifier, dict) == False or len(classifier.keys()) != y_test.shape[1]: raise ValueError("You should provide as many classifier than labels") else: if isinstance(classifier, dict) == False: classifier = {y_test.columns[0]:classifier} labels = y_test.columns.tolist() # Construction of the pyplot object nrows = (len(labels)//ncols) + ((len(labels)%ncols)!=0)*1 fig = plt.figure(constrained_layout=True, figsize=(15*ncols,7*nrows)) figs = fig.subfigures(nrows, ncols) figs = figs.flatten() if (ncols+nrows) == 1: figs = [figs] axs = [x.subplots(1, 2) for x in figs] # For each label : for i in range(len(labels)): label = labels[i] label_classifier = classifier[label] figs[i].suptitle(label) y_test_true = y_test[label].values y_test_hat_proba = label_classifier.predict_proba(X_test)[:,1] y_test_hat = (y_test_hat_proba >= threshold)*1 # Computation of metrics f1_score_, accuracy_score_, recall_score_, precision_score_ = [x(y_test_true, y_test_hat) for x in [f1_score, accuracy_score, recall_score, precision_score]] auc_score_ = roc_auc_score(y_test_true, y_test_hat_proba) confusion_matrix_ = confusion_matrix(y_test_true, y_test_hat) # Plotting ## Confusion matrix ConfusionMatrixDisplay( confusion_matrix_, display_labels=[0, 1] ).plot( ax=axs[i][0] ) ## ROC curve fpr, tpr, thresholds = roc_curve( y_test_true, y_test_hat_proba ) axs[i][1].plot( fpr, tpr, label=f"AUC: {auc_score_:.2f}\nF1-Score: {f1_score_:.2f}\nRecall: {recall_score_:.2f}\nPrecision: {precision_score_:.2f}\nAccuracy: {accuracy_score_:.2f}" ) axs[i][1].legend(loc=4, fontsize="x-large") axs[i][1].set_ylabel('Taux de vrai positifs') axs[i][1].set_xlabel('Taux de faux positifs') fig.suptitle(f"Performance de l'algorithme {algorithm_name} avec un threshold de {threshold}")