{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "![Urgences - Image CC0 - pexels.com](img/pexels-pixabay-263402.jpg \"Urgences\")" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Challenge - [ED Lab Prediction]\n", "_Nom à trouver_" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Objectif" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Ce notebook récupère la classifications des médicaments (ATC-IV) à partir des API publiques de la `national library of medecine`." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "```\n", "\n", " This product uses publicly available data from the U.S. National Library of Medicine (NLM), National Institutes of Health, Department of Health and Human Services; NLM is not responsible for the product and does not endorse or recommend this or any other product.\n", "\n", "```" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "# Récupération des données" ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [], "source": [ "import sqlite3\n", "import pandas as pd\n", "from xml.etree import ElementTree as ET" ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [], "source": [ "conn = sqlite3.connect(\"./data/mimic-iv.sqlite\")" ] }, { "cell_type": "code", "execution_count": 284, "metadata": {}, "outputs": [], "source": [ "# Liste des traitements\n", "drugs_gsn = pd.read_sql(\"\"\"\n", " SELECT gsn, ndc, name\n", " FROM medrecon\n", " GROUP BY gsn\n", "\"\"\", conn)" ] }, { "cell_type": "code", "execution_count": 223, "metadata": {}, "outputs": [], "source": [ "# Création de la liste pour utilisation de l'outils RxMix\n", "# https://mor.nlm.nih.gov/RxMix/\n", "\n", "## Utilisation de RxMix pour ne pas sur-solliciter les serveurs de la NML à travers des queries unitaires\n", "\n", "drugs_gsn[\"gsn\"].to_csv(\"./config/gsn_for_batch.txt\", header=False, index=False)" ] }, { "cell_type": "code", "execution_count": 263, "metadata": {}, "outputs": [], "source": [ "# Récupération des classes ATC associées\n", "atccode = ET.parse(\"./config/atccode.xml\")\n", "\n", "atccode_parsed = [\n", " (int(x[0].text), \n", " [\n", " y.text \n", " for y in x[2].findall(\".//classId\") \n", " if y.text not in [\"-\",\"\"]\n", " ]) for x in atccode.getroot() if len(x) > 2\n", "]" ] }, { "cell_type": "code", "execution_count": 267, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Identification de 5906 sur 9262 (0.64) code NDC avec un code rxCUI associé.\n" ] } ], "source": [ "n_found = len([x for x in atccode_parsed if len(x[1])>0])\n", "n_total = drugs_gsn.shape[0]\n", "\n", "print(f\"Identification de {n_found} sur {n_total} ({n_found/n_total:.2f}) code NDC avec un code rxCUI associé.\")" ] }, { "cell_type": "code", "execution_count": 272, "metadata": {}, "outputs": [], "source": [ "atccode_parsed_filtered = dict([x for x in atccode_parsed if len(x[1])>0])\n", "atccode_parsed_filtered_df = pd.DataFrame.from_dict(atccode_parsed_filtered, orient=\"index\") \\\n", " .apply(lambda x: x.dropna().tolist(), axis=1) \\\n", " .reset_index() \\\n", " .rename(columns={\"index\":\"gsn\", 0:\"atc\"})\n", "\n", "# Réunion de NDC et ATC\n", "drugs_atc = atccode_parsed_filtered_df \\\n", " .explode(\"atc\") \\\n", " .dropna() \\\n", " .drop_duplicates([\"gsn\",\"atc\"])[[\"gsn\",\"atc\"]]" ] }, { "cell_type": "code", "execution_count": 296, "metadata": {}, "outputs": [], "source": [ "drugs_atc.to_csv(\"./config/atc_items.csv\", index=False)" ] } ], "metadata": { "interpreter": { "hash": "28b293e0c0671e44c7281dde6399c7c7419d3faca031d22494da8635907ada72" }, "kernelspec": { "display_name": "Python 3.9.7 ('base')", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.7" }, "orig_nbformat": 4 }, "nbformat": 4, "nbformat_minor": 2 }