|
@@ -38,7 +38,7 @@ class torchMLPClassifier_sklearn (BaseEstimator):
|
|
|
Pytorch neural network with a sklearn-like API
|
|
|
"""
|
|
|
|
|
|
- def __init__ (self, model, n_epochs=50, early_stop=True, early_stop_metric="accuracy", early_stop_validations_size=0.1, batch_size=1024, learning_rate=1e-3, class_weight=None, device_train="cpu", device_predict="cpu"):
|
|
|
+ def __init__ (self, model, n_epochs=50, early_stop=True, early_stop_metric="accuracy", early_stop_validations_size=0.1, batch_size=1024, learning_rate=1e-3, class_weight=None, device_train="cpu", device_predict="cpu", verbose=False):
|
|
|
"""
|
|
|
Parameters:
|
|
|
-----------
|
|
@@ -52,6 +52,7 @@ class torchMLPClassifier_sklearn (BaseEstimator):
|
|
|
class_weight: dict or str, same as the sklearn API
|
|
|
device_train: str, device on which to train
|
|
|
device_predict: str, device on which to predict
|
|
|
+ verbose: boolean, if true the loss and score are printed
|
|
|
"""
|
|
|
|
|
|
self.model = model
|
|
@@ -59,6 +60,7 @@ class torchMLPClassifier_sklearn (BaseEstimator):
|
|
|
self.n_epochs = n_epochs
|
|
|
if early_stop and (early_stop_metric is not None) and (early_stop_metric in SCORERS.keys()) and (isinstance(early_stop_validations_size, int) or isinstance(early_stop_validations_size, float)):
|
|
|
self.early_stop = early_stop
|
|
|
+ self.early_stop_metric_name = early_stop_metric
|
|
|
self.early_stop_metric = SCORERS[early_stop_metric]
|
|
|
self.early_stop_validations_size = early_stop_validations_size
|
|
|
else:
|
|
@@ -71,6 +73,7 @@ class torchMLPClassifier_sklearn (BaseEstimator):
|
|
|
self.device_train = device_train
|
|
|
self.device_predict = device_predict
|
|
|
self.batch_size = batch_size
|
|
|
+ self.verbose = verbose
|
|
|
|
|
|
def fit(self, X, y):
|
|
|
"""
|
|
@@ -103,7 +106,6 @@ class torchMLPClassifier_sklearn (BaseEstimator):
|
|
|
self.network = self.model(n_features=n_features, n_labels=n_labels)
|
|
|
self.optimizer = optim.Adam(self.network.parameters(), lr=self.learning_rate)
|
|
|
|
|
|
-
|
|
|
# Creating dataloader for X_train, y_train
|
|
|
data_loader = DataLoader(range(X_train.shape[0]), shuffle=True, batch_size=self.batch_size)
|
|
|
|
|
@@ -124,6 +126,8 @@ class torchMLPClassifier_sklearn (BaseEstimator):
|
|
|
last_score = 0
|
|
|
for i in range(self.n_epochs):
|
|
|
|
|
|
+ self.network = self.network.to(self.device_train)
|
|
|
+
|
|
|
# Starting an epoch
|
|
|
for indices in data_loader:
|
|
|
self.optimizer.zero_grad()
|
|
@@ -141,6 +145,7 @@ class torchMLPClassifier_sklearn (BaseEstimator):
|
|
|
criterion.weigths = sample_weights
|
|
|
|
|
|
# Get prediction
|
|
|
+ X_train_sample_tensor, y_train_sample_tensor = X_train_sample_tensor.to(self.device_train), y_train_sample_tensor.to(self.device_train)
|
|
|
y_train_sample_hat = self.network(X_train_sample_tensor)
|
|
|
|
|
|
loss = criterion(y_train_sample_hat, y_train_sample_tensor)
|
|
@@ -157,6 +162,12 @@ class torchMLPClassifier_sklearn (BaseEstimator):
|
|
|
else:
|
|
|
last_score = score
|
|
|
|
|
|
+ if self.verbose:
|
|
|
+ if self.early_stop:
|
|
|
+ print(f"Epoch {i} : Loss {loss.item():.3f} - {self.early_stop_metric_name} {score:.3f}")
|
|
|
+ else:
|
|
|
+ print(f"Epoch {i} : Loss {loss.item():.3f}")
|
|
|
+
|
|
|
return self
|
|
|
|
|
|
def predict(self, X):
|